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programs

 HPCAT opportunities on the horizon of
APS-Upgrade
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Why High-pressure Synchrotron X-ray

Capabilities?
7oE ........ SN S N E ~ 100kg  100Kg

;] \
UL 1]
| gasket

60 |- Semiconductors become metals

%) [ ]
< - 4
S 50 7
Lé’ - Oxygen metallization ;
40 | -
= - Earth core-mantle 1
_g - boundary .
g 30 - Sodium becomes .
8 [ insulator ]
<L 20 - Hydrogen metallization ?
>
S :
< 10k \
ol v un PP A PP A AT ]
0] 1 2 3 4

Pressure in millions of atmosphere

e Small and bright x-ray probes
* High energy penetrating power

NNSA - July 29, 2015 3



HPCAT Among Other National Facilities
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* Thermal state variables
(better than 1%)

* Discovery and synthesis

 Materials performance
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HPCAT at Advanced Photon Source
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HPCAT - Four Beamlines

Sector 16 Sector 16
Newly canted undulator beams Bending magnet beam
~ 5-36 keV

Split in space
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Spectroscopy Micro-diffraction Micro-diffraction \White Laue
Scattering (high photon flux) XANES Paris-Edinburgh

XES,IXS — 1eV Laser heating (>3000K) P
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(fast x-ray imaging)
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HPCAT - Four Beamlines

The largest synchrotron facility dedicated for
static high pressure (HP) research

The most versatile HP synchrotron techniques
in a single sector, covering x-ray diffraction, x-
ray spectroscopy, and x-ray imaging

Each individual technique at the state-of-art

Comprehensive set of advanced on-line support
equipment, sample preparation, and
complementary characterization devices




Addressing Programmatic and Technical
Needs for NNSA

e Structure at extremes

— Crystal structure: symmetry — atomic position — electron density topology

— Amorphous - nano-structure - micro-structure - grain boundaries

* Electrons at extremes

— Valence electrons, conducting electrons

— Strongly correlated electrons, (de)localization
— Hybridization, spin transitions

 Equations of states and phase relations

— P-V-T EOS at extended range
— Phase diagram at extended P-T range

* Kinetics under rapid (de)compression
* Strength and rheology at extremes
* Liquid properties at extremes

Materials performance, materials synthesis
: Basic science, novel materials discovery
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HPCAT Users and Publications
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» >2 papers/week in peer reviewed journals, one of the most productive sectors
» >23% appear in journals with impact factors 2PRL

» 11 student or postdoc users who later joined National Labs as staff

» 61 Ph.D. theses since 2003
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What are the Technical Challenges?

Going to pressures beyond 400 GPa

— Pressure device and anvil designs, sub-micron probes
Hydrogen at Mbars
— Higher flux, better collimation
Thermal EOS - challenging precision and accuracy
— Gradients, calibration
Complex and heterogeneous materials
— Microstructure, meso-scale structure, interfaces
Software
Theory
Detectors
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APS Upgrades / Changes

APS Now

* Higher brightness (~x100)
* Higher coherent fraction (~x100)

400
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microns
o

* 3-Pole Wiggler will replace
Bending Magnet Source

* Superconducting undulator

* High quality focusing x-ray optics

* Detectors
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Opportunities for HPCAT
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Opportunities for HPCAT

Going Higher Pressures
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Opportunities for HPCAT

Filling the strain rate gap between “static” and “dynamic”
and study the dynamic properties

“Static” Techniques Dynamic Compression
LVP Diamond Cells Kolsky bar ~ Gas-gun [ acer shock
Explosives
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Opportunities for HPCAT

Complex and heterogeneous materials

Obtain 3D imaging at
sub-micron scale for

multi-scale
information at
extremes

7.4 um
15.3 um
124 um

Nature Geo. (2013)
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Nature Comm. (2013)

Coherent x-ray
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Goals of HPCAT Upgrade

* To establish a set of sub-micron x-ray probes for multi-Mbar
experiments

* To reach static pressures beyond 5 Mbar, even above 1 TPa

Designs, routine operations

* To obtain precise thermal EOS and determine HP melting at
multi-Mbar

* To address polyamorphism in liquids
 To fill the strain rate gap between “static” and “dynamic”
Kinetics, metastability, transition and reaction mechanism

* To obtain 3D imaging at sub-micron scale for multi-scale
information at extremes

Heterogeneity of materials, micro- and meso-scale structure
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SUPPLEMENTAL SLIDES
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HPCAT Beam-time Distribution

25% to APS general users

60% to HPCAT partners
Within the 60%

— 75% NNSA (30% CDAC, 20% UNLV, 20% LLNL, 5% LANL)
— 25% BES

8% beamline operation (typical)

7% R&D (HPCAT staff or via collaboration
with partner users)
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APS-U Scope

New, 4™ generation multi-bend achromat storage ring lattice in the existing
tunnel

Doubling of the ring stored beam current
Replacements of all Front-Ends

A suite of new beamlines designed for best-in-class performance with MBA
source properties

Optics for remaining beamlines to take full advantage of MBA source
properties

Improved beam stability
All beamlines will realize significant benefits
Well-defined installation and testing period is a key deliverable

12 months installation and testing period

2015 2020 2025

NNSA - July 29, 2015
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HPCAT-U Scope

* Enabling sub-micron x-ray probes, including diffraction and
spectroscopy

* Replacements of x-ray optics matching the APS-U

* Reconfigurations of bend magnet beamlines for 3-pole Wiggler source
* On-sample flux increase by >100 times in all four beamlines

* Improved beam stability

* Advanced detectors

* Installation and testing period consistent with APS-U

HPCAT-U

2015 2020‘ 2025

APS-U installation
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HPCAT-U Timelines

2014 2015 2016 2017 2018 2019 2020 2021 2022

APS-U -

12 month

Phase I: Near future projects

Phase II: Sub-micron probes, hutch reconfiguration,
collimation optics, advanced detectors

Phase III: New x-ray imaging techniques (coherence,
diffraction tomography), advanced detectors
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Student and Postdoc Users at HPCAT

National Lab as a staff 11
National Lab as a postdoc 10
Faculty member in U.S. universities 24

Ph. D. Thesis since 2003 57




Working with Communities

* Workshops and L o A
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* Scientific meetings
— Users and staff

 Monthly meetings
— HP-SR

— HP interest group (APS
and beyond)

— Student/postdoc/visitor
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Recent Upgrades and New Capabilities

Beamlines

— Canted undulator operation - two completely independently operational undulator beamlines
— Improved x-ray focusing optics - beamsize reduction by 5-10 times

HP X-ray Diffraction

— Rapid (de)compression - kinetics
— Modulated (pulsed) laser heating - HP melting
—  Multigrain crystallography - charge densities

HP X-ray Spectroscopy

— Resonant x-ray spectroscopy - electronic structures
— Advanced collimation techniques - measuring weak inelastic scattering from hydrogen

HP X-ray imaging

— Fast optical and x-ray imaging - viscosity, miscibility, transition kinetics

Integrated

— Comprehensive studies of liquids at high pressures - density, structure, viscosity, sound velocity
— XRD and XANES; XES and XRD, NRIXS/NFS and XRD - better overall science picture

Support equipment
— Fast and sensitive x-ray detectors
— Various cryostats, various heating techniques
— Advanced sample preparation instruments

NNSA - July 29, 2015
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Examples of Data Obtained at HPCAT

* Thermal equation of state (EOS)

* Dynamical properties using rapid
(de)compression

* Charge density at HP
* Liquids at HP

* Band structures of hydrogen and alkali
metals

* Micro-structure and heterogeneity
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High Precision of Equations of State

\ Megabar Isotherms of Ta

One isotherm in a
few seconds

34 ~ « 300K
- 580K
- 925K

32 -

Volume (A%
8

¥ I 2 I ¥ 1 ¥ I ¥ I v I
20 40 60 80 100 120
Pressure (GPa)

V, uncertainty | B, uncertainty B, uncertainty

Cynn and Yoo, 1999 None (fixed) 0.025 0.029
Dewaele et al, 2004 None (fixed) 0.017 0.046
HPCAT (recent) 104 (refined)* 0.005 0.006

*important, and it should be refined (see, for example, Ross Angel)

NNSA - July 29, 2015 27



Rapid Compression and Decompression
Filling the Strain Rate Gap between Static and Dynamic Experiments

Time-resolved full-frame
experiments
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Modulated Laser Heating
addressing HP Melting and Thermal EOS

Laser beams

X-ray hv

3

XRD
. g 0
Modulated heating to control kinetics Static Static
pressure pressure

Heating spot > #3120 um
to reduce radial T gradient

Double
sided
heating to
minimize
axial T
gradient




Electron Density Distribution
from Multigrain Crystallography

High pressure
a-Ce at 5.7 GPa
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Time Resolved Microstructural Changes

Zr at 4.3 GPa Zr o-phase at 5.0 GPa
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Reducing beam size for high
spatial resolution

31
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Monitoring the Band Structure of Hydrogen at HP

Eliminating background scattering
from massive surrounding materials

Conventional Slits define the
scattering angle, but allows
scattering from the gasket to
reach the analyzer. This results
in a large background.

Polycapillary optic improves
signal to noise, use of mask
allows for momentum

resolved measurements
To analyzer
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X-ray inelastic scattering of hydrogen.
Top - using a polycapillary optic
significantly suppresses the
background from Be gasket and
diamond anvil. Bottom - hydrogen
signal using slit collimation for
comparison.

NNSA - July 29, 2015 32



Studies of High Pressure Liguids

Numbers of points in
1 mm falling distance
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HP Photochemistry “Radiation Damage”

'S s
50 um <1 GPa" ¥«
The breakdown of H,0 with
radiation at HP, forming a molecular

alloy (H,),0,. (Mao et al, 2006)

at HP

Decomposition
of explosives (a

PETN sample)
with radiation

Pravica et al (2014) KCIO,

@)
o @ divalent oxygen
r . . r = o\ . oxygen interstitial
’.’.‘Q.-M-.. ‘."?‘.-?.... oxygen vacancy
, .:’ ! .".".‘",".". @ tetravalent actinide
) trivalent actinide
02696960600 Y0202 @
000000060600
The radiation tolerance of actinide
materials is found to depend on the
efficiency of redox reaction, thus can be
enhanced by altering grain size and cation

valence variability. (Tracy et al, 2015)

Generating
molecular
mixtures (H,, O,)
under HP from
NH;BH; and
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16-BM-B: Paris Edinburgh Press and White Laue

* White beam Laue (under commissioning)

(a) Time (ms)

— Fast, no sample rotation 160 180 200 200 240 260
— Microstructure: morphology, orientation
— Deformation, dislocation, etc

* EDXD (PE Press)

— Amorphous/liquid structure

|02mm

A Pt sphere in carbonate melt

— Fast radiographic images or PCI for
viscosity, immiscibility,

density (mono, under development)
— Acoustic measurement
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16-BM-D: HP 11-XRD + p1-XANES

 XRD
— General u-XRD

an important addition for off-loading the
IDB (flux two orders of magnitude less
than that in IDB)

— Single crystal diffraction
Mbar, multigrain crystallography

 XANES

— Inter-changeable between XANES
and XRD

— High energy XANES (>20 keV)

Electron density distribution of B-Ge at 12GPa
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16-1D-B: Laser Heating Table

* On-line laser heating
for in situ XRD
measurements

* Modulated
heating/cooling

e Fast T measurement
* HP melting

e Thermal EOS
e Phase relations




16-1D-B: General Purpose Table for u-XRD

 HP u-XRD
* Open space for cryostat
and other bulky devices

* Time resolved XRD
with rapid
(de)compression
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16-1D-D:
HP X-ray Scattering and Spectroscopy

e 1-2 eV -1IXS
— Chemical bonding
— Electronic excitations

- (R)XES

— Spin transition
— Valence band electrons

* Nuclear IXS (2meV)

— Phonon DOS X-ray inelastic scattering/x-ray Raman
setup using multi-element analyzer

— Mossbauer effect
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Support Equipment

* On-line
— Cryostats for XRD, XES, NFS, IXS
— Ruby/Raman systems/Laser heating

— P controls (diaphragm, gear box, piezo,
doubled sided)

e Off-line
— Preparation lab, new micro-manipulator
— Laser drill, (EDM, EDM-Be)
— Off-line laser heating, Raman, ruby
« Software and Controls

— Data evaluation on site

— More macros for specific setups and [Fe
controls -

U
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