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that anomalous diffusion can displace the sulphuric acid spikes that
are used as stratigraphic markers to correlate timescales between
different ice cores and the tephra deposits contained in other
sedimentary records24. Our model explains how diffusion preserves
the amplitudes of anomalies in the cB record, but the anomalies
themselves are translated relative to the surrounding ice. Efforts
should be made to account for this behaviour when analysing data
from the older portions of ice cores by increasing spatial resolution.
This could be particularly important when the relative timing of
concentration peaks is needed to test theories for the causal links
between the various climate proxies. M
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The 660-km seismic discontinuity in the Earth's mantle has long
been identi®ed with the transformation of (Mg,Fe)2SiO4 from
g-spinel (ringwoodite) to (Mg,Fe)SiO3-perovskite and (Mg,Fe)O-
magnesiowuÈstite. This has been based on experimental studies of
materials quenched from high pressure and temperature1±3, which
have shown that the transformation is consistent with the
seismically observed sharpness and the depth of the discontinuity
at expected mantle temperatures4. But the ®rst in situ examination
of this phase transformation in Mg2SiO4 using a multi-anvil press5

indicated that the transformation occurs at a pressure about 2 GPa
lower than previously thought (equivalent to ,600 km depth) and
hence that it may not be associated with the 660-km discontinuity.
Here we report the results of an in situ study of Mg2SiO4 at
pressures of 20±36 GPa using a combination of double-sided
laser-heating and synchrotron X-ray diffraction in a diamond-
anvil cell. The phase transformation from g-Mg2SiO4 to MgSiO3-
perovskite and MgO (periclase) is readily observed in both the
forward and reverse directions. In contrast to the in situ multi-
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anvil-press study5, we ®nd that the pressure and temperature of
the post-spinel transformation in Mg2SiO4 is consistent with
seismic observations4,6 for the 660-km discontinuity.

Pure synthetic forsterite was mixed with 10 wt% platinum which
serves as an internal pressure scale and laser absorber. A 15-mm-
thick foil of the sample mixture was loaded in a 100-mm hole in a
steel gasket and compressed by 300-mm diamond anvils. Argon
served as a pressure transmitting and insulation medium. Ruby
chips were also loaded in an unheated area.

The laser-heating system at the GSECARS sector of the Advanced
Photon Source provides a radially homogeneous temperature
pro®le over 20±30 mm by using a TEM01 Nd:YLF laser mode, and
reduces the axial thermal gradient by heating from both sides7,8.
Temperature pro®les were measured using imaging spectrometers
on each side. Temperature was determined by ®tting the radiation
spectra, corrected for system response, to Planck's equation. A
three-dimensional averaging technique was used to calculate the
mean temperature over the volume exposed to X-rays7. Including
radial and axial gradients, temperature ¯uctuations during X-ray
exposure, and the ®tting residual, the temperature uncertainty (1j)
was 6 50±150 K in these experiments.

Energy dispersive X-ray diffraction measurements were per-
formed using a small (5 mm ´ 7 mm) horizontally focused X-ray
beam and a solid-state detector (Fig. 1). We oscillated the
diamond cell (6208) about its loading axis to minimize the effect
of preferred orientation. The primary pressure scale used here is the
pressure±volume±temperature (P±V±T) equation of state (EOS)
of platinum9. Pressure was also measured using the ruby scale10

before and after heating.
Below 20 GPa, we performed two heating runs to synthesize

ringwoodite. The pressure was then increased to 20.4 GPa and a
third run was performed. We observed an increase of 2±4 GPa
during heating due to the thermal pressure11,12. After 20 minutes of
heating, the periclase (200) peak appeared and co-existed with
ringwoodite diffraction lines. By increasing the temperature from
1,672(50) K to 1942(75) K (numbers in parentheses are 1s uncer-
tainties), we observed a pressure decrease from 24.6(4) GPa to
22.3(6) GPa as a result of thermal relaxation13 (see P±T path for
run 3 in Fig. 2). At this point, the periclase (200) line disappeared,
owing to back transformation to the lower-pressure phase. In the

fourth run, we increased pressure to 23.1 GPa (Fig. 1a). After eight
minutes of heating, diagnostic perovskite lines, (002)+(110) and
(004)+(220) doublets, appeared (Fig. 1b). The periclase (200) line
was also observed in other patterns during this run. We performed
two more runs at 25±29 GPa (run 5 in Fig. 2) and 30±35 GPa, where
we observed complete transformation from ringwoodite to perovs-
kite+periclase (Fig. 1c). To observe the transformation from per-
ovskite+periclase to ringwoodite, we decreased pressure and
performed three heating runs at 27±30, 25±26 and 21±25 GPa.
For the last run, ringwoodite appeared after 6 minutes of heating
and the transformation was complete after 24 minutes (Fig. 1d, e).
Additional details regarding the P±T paths are provided in the
Supplementary Information.

We observe that the low- and high-pressure phase assemblages
coexist within a range of about 2 GPa (Fig. 2). This scatter is due to
both temperature uncertainty and kinetic effects. The temperature
uncertainty is 50±150 K, and this propagates to a pressure uncer-
tainty of 0.3±0.9 GPa. Kinetics and the P±T path may also be
important. For example, as shown above in the P±T path for run
3 (Fig. 2), we observed that the high-pressure assemblage synthe-
sized above the phase boundary can survive at slightly below the
phase boundary for 5 minutes before complete back transforma-
tion.

Using data points for which we observed a mixture of low- and
high-pressure phases, we obtained the phase boundary. We ®xed the
slope of the phase boundary to the average from two multi-anvil
studies2,5 (-2.75 MPa K-1), because our data scatter precludes con-
straining the slope reliably. A weight was assigned to each data point
using its pressure and temperature uncertainties. The transforma-
tion pressure was found to be 23.7 6 1.1 GPa at 1,800 K. However,
the boundary obtained in ref. 5 is 2.6 GPa lower than this, which is a
statistically signi®cant difference at the 2j level (Fig. 2).

In order to examine this result, we investigated several error
sources. In the laser-heated diamond cell, the greatest error source is
the temperature uncertainty14. The error in temperature propagates
to pressure through the thermal-pressure term. The sensitivity of
pressure for temperature, (]P/]T)P , is calculated for platinum using
its P±V±T EOS9. To have a 2.6-GPa error, the temperature must be
overestimated by 380 K. However, including all random error
sources, our temperature uncertainty is less than 150 K. Systematic
error sources have also been examined, and are estimated to be less
than 100 K for this heating system8. Using lattice strain theory15,
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differential stresses were also investigated and found to be negligible
at high temperature.

We also compared pressures obtained from different materials in
our sample, such as periclase16 and ringwoodite17. On average, the
platinum pressure scale9 overestimates pressure by 0.2 GPa com-
pared to periclase and by 2.0 GPa compared to ringwoodite. We also
examined the difference between platinum and ruby pressures
before and after heating. On average, platinum yields a larger
pressure by ,1.2 GPa. However, the ruby chips were located at
the edge of the sample chamber where the pressure should be lower,
owing to the radial gradient. Thus, except for ringwoodite, all
pressures are internally consistent within 1.2 GPa.

One possibility for the discrepancy between our result and those
of Irifune et al.5 is the inconsistency of the equations of state of
platinum and gold. Irifune et al. justi®ed the use of the gold pressure
scale of ref. 18 on the basis of an earlier study19 that found good
agreement between the gold EOS of Anderson et al.18 and the
periclase EOS by Jamieson et al.20 In our study, we observed that
the platinum pressure scale by Holmes et al.9 shows good agreement
with the periclase pressure scale by Speziale et al.16. Thus by
comparing the periclase EOS values, we can obtain an inter-
comparison of gold and platinum. Figure 3 shows the difference
between the periclase EOS of Jamieson et al.20 and Speziale et al.16

We observe a maximum difference of 2.1 GPa between the two
periclase pressure calculations at P±T conditions of the post-spinel
transformation. This means that the gold EOS18 yields ,2 GPa
lower pressure than the platinum EOS9. We also observed a 2 GPa
underestimation of pressure by the ringwoodite EOS17, which was
also obtained using the gold pressure scale of ref. 18.

The discrepancy between the two periclase scales is mainly caused
by the use of different GruÈneisen parameters. As shown in Fig. 3, the
discrepancy decreases drastically just by changing the GruÈneisen
parameter used by Speziale et al.16 (1.52 6 0.05) to the value used by
Jamieson et al.20 (1.32). The former workers obtained the GruÈneisen
parameter using a thermodynamic relationship, g = aKS/rCP (a is
the thermal expansivity, KS is the adiabatic bulk modulus, r is the
density and CP is the isobaric heat capacity), and accurately
determined thermodynamic parameters, whereas the value used
by the latter workers was based on low-accuracy estimates from
porous shock wave data. In addition, the EOS of Speziale et al.16

satis®es a wide range of high P±T data including static
compression21,22 and shock wave data23.

A recent study24 that intercompared pressure standards suggested
that the gold and platinum pressure scales are consistent. However,
this study also found that various different standards yield pressures
that differ by ,2 GPa at 24 GPa. We also note that Anderson later
concluded that the gold EOS may not be reliable25. These results
emphasize the need for further studies of pressure standards. Other
possible sources of systematic errorÐsuch as the effect of pressure
on thermocouple e.m.f. in multi-anvil studies26, temperature
gradients, deviatoric stress, and stress inhomogeneityÐalso need
to be investigated.

Phase boundaries for mantle minerals determined using in situ
techniques at pressures near 660-km depth are shown in Fig. 4.
Apart from this work, all determinations were performed in
the multi-anvil press using the gold scale of Anderson et al.18. The
post-spinel and post-ilmenite boundaries yield low temperatures
(, 900 K) at 660-km depth. However, a variety of geophysical
constraints including xenoliths, basalt melting temperatures, and
in situ data for the a±b transformation in Mg2SiO4 suggest that
transition zone temperatures are ,1,600±1,900 K (refs 27±29).
At these temperatures, the post-spinel boundary would occur at
,610-km depth. Because no discontinuity is observed near here,
this would place severe limits on the olivine abundance of the
transition zone and further require that the 660-km discontinuity
be associated with a chemical change or the garnet±perovskite
transformation. However, seismological data suggest the 660-km
discontinuity does not prevent the penetration of subducting
stabs30. Furthermore, to associate the post-garnet boundary24

with the 660-km discontinuity, aluminium enrichment relative to
pyrolite is required. Although the thickness and depth of this
boundary will be affected by bulk composition24, the slope of
post-garnet boundary con¯icts with the seismically observed nega-
tive Clapeyron slope of the 660-km discontinuity4. In contrast, our
observations of the post-spinel transformation are fully consistent
with geophysical data for the 660-km discontinuity.

We have thus shown that the laser-heated diamond-anvil cell can
accurately determine phase boundaries of mantle constituents. We
®nd that the post-spinel phase boundary lies within a plausible
mantle temperature range at 660 km depth, and thus this
transformation remains the best candidate to explain this seismic
discontinuity. M
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It had long been accepted that the 400-km seismic discontinuity in
the Earth's mantle results from the phase transition of (Mg,Fe)2-
SiO4-olivine to its high-pressure polymorph b-spinel (wad-
sleyite), and that the 660-km discontinuity results from the
breakdown of the higher-pressure polymorph g-spinel (ringwood-
ite) to MgSiO3-perovskite and (Mg,Fe)O-magnesiowuÈstite1±4. An
in situ multi-anvil-press X-ray study5 indicated, however, that the
phase boundary of the latter transition occurs at pressures 2 GPa
lower than had been found in earlier studies using multi-anvil
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Figure 1 Diamond-cell arrangements used in this study to heat samples of Mg2SiO4-

forsterite. a, Schematic cross-section. Samples were polished disks of pure, synthetic

Mg2SiO4-forsterite, 10±15 mm thick and with diameters of 20 to 100 mm, thermally

insulated from the bottom diamond by grains of forsterite. Argon or CsCl were used as

pressure media. The pressure chambers were typically 170±180 mm in diameter and

45±55 mm in thickness. The samples were either heated directly with a 150 W CO2 laser

(l = 10.5 mm), or were sputtered with ®lms of Mo, Re or Cr (,1 mm thick) and then

heated with a 50 W YLF (yttrium-lithium-¯uoride) laser (l = 1.05 mm)Ðand in some

experiments with the combined beams of an additional 20 W YLF laser. b, Molybdenum-

sputtered forsterite sample after heating. The heated portion showed full conversion to

g-Mg2SiO4. Thermal pressure increase was measured from two adjacent grains of ruby

and strontium borate excited with an argon laser. c, Small crystal (15±20 mm in size)

inside a Re microfurnace with outer diameter 80 mm, inner diameter 20 mm, and a

thickness of 30 mm. This furnace was uniformly heated with the YLF laser in an argon

pressure medium. This heating method essentially eliminated temperature gradients in

the sample.
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