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Coexistence of multiple metastable 
polytypes in rhombohedral bismuth
Yu Shu1, Wentao Hu1, Zhongyuan Liu1, Guoyin Shen2, Bo Xu1, Zhisheng Zhao1, Julong He1, 
Yanbin Wang3, Yongjun Tian1 & Dongli Yu1

Derivative structural polytypes coexisting with the rhombohedral A7 structure of elemental bismuth 
(Bi) have been discovered at ambient condition, based on microstructure analyses of pure Bi samples 
treated under high pressure and high temperature conditions. Three structures with atomic positions 
close to those of the A7 structure have been identified through first-principles calculations, showing 
these polytypes energetically comparable to the A7 structure under ambient condition. Simulated 
diffraction data are in excellent agreement with the experimental observations. We argue that 
previously reported some variations of physical properties (e.g., density, electrical conductivity, and 
magnetism) in bismuth could be due to the formation of these polytypes. The coexistence of metastable 
derivative structural polytypes may be a widely occurring phenomenon in other elemental materials.

Bismuth as a typical semimetal has attracted extensive research interests. Numerous studies have been conducted 
on Bi to investigate the electrical properties1–5 and carrier transport behaviors6–15, thermoelectric properties16,17 
and phase transitions under high pressure and high temperature (HPHT)18–22. Under ambient condition, Bi is 
commonly designated as a rhombohedral lattice (space group R-3m, Strukturbericht A7), which is characterized 
by a pair of atoms spaced non-equidistantly along the trigonal axis in a Peierls distortion of the simple cubic 
structure8. Alternatively, the structure can be described either as a hexagonal lattice with six atoms per unit cell or 
as a pseudo-cubic lattice with one atom per unit cell5. However, it is well-known that the observed X-ray diffrac-
tion (XRD) patterns of Bi cannot be fully accounted for with the rhombohedral A7 structure, which is designated 
as (marked by) “Doubtful (?)” in the PDF card (JCPDS PDF 44-1246) of the International Center for Diffraction 
Data and labeled with “§” in the periodic table of elements23.

Some long-standing unusual behaviors in physical properties have also been noted in Bi, possibly resulting 
from the structure uncertainty. In 1928, Kapitza reported inconsistent changes in specific resistance when Bi 
crystals were subjected to strong magnetic field24, and attributed the observations to small lattice distortions in 
Bi structure. Later, slight density variations of Bi single crystals were reported25. In 1931, Goetz and Focke found 
that Bi single crystals grown under a strong oriented magnetic field exhibit a decrease in density and an increase 
in specific resistance26. The applied magnetic field appeared to affect the Bi lattice during solidification, leading 
to changes in the density and resistance. Some earlier observations were attributed to a so-called “mosaic block” 
structure27,28 with slightly different lattice constants. A variety of formation mechanisms were proposed for this 
mosaic structure based on different assumptions, such as the influence of impurities27, allotropic changes29, and 
deformation twinning25. Nonetheless, the atomic configuration of the mosaic structure in Bi crystals remains 
elusive.

In this paper, we report structural polytypes of Bi evidenced by both experimental observations and 
first-principles calculations. We performed structural characterizations on pure Bi samples treated at the con-
ditions of different pressure and temperature with XRD and high-resolution transmission electron microscopy 
(HRTEM) and discovered a remarkable structural diversity in Bi after the treatments. Using crystal structure 
prediction techniques, we identified three new structures of bismuth that are closely related to the well-known A7 
structure and differ from each other only by minute lattice distortions. First principles calculations indicate these 
structures have very similar energies, explaining the observed coexistence of multiple metastable polytypes in Bi. 
Such a structural diversity is intrinsic, not due to extrinsic action from the impurities or deformation, and maybe 
leads to some property variations (such as density, melting point, electrical conductivity, and magnetism) in pure 

1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 
Hebei 066004, China. 2High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of 
Washington, Argonne, Illinois 60439, USA. 3Center for Advanced Radiation Sources, University of Chicago, Argonne, 
Illinois 60439, USA. Correspondence and requests for materials should be addressed to D.Y. (email: ydl@ysu.edu.cn)

received: 11 October 2015

accepted: 30 December 2015

Published: 17 February 2016

OPEN

mailto:ydl@ysu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:20337 | DOI: 10.1038/srep20337

Bi under normal conditions. These polytypes provide a structural interpretation for the so-called “mosaic block” 
structure previously speculated.

Results and Discussion
An HRTEM image of the Bi sample treated under the condition of high pressure of 2 GPa and temperature of 
2273 K viewed along [010] zone axis is presented in Fig. 1a with the corresponding selected area electron dif-
fraction (SAED) patterns shown in Fig. 1b. Simulated atomic distribution of the ideal A7-Bi structure viewed 
along the same zone axis is shown in Fig. 1c. In Fig. 1a, several regions with distinct atomic configurations are 
highlighted (red circles, labeled A~F), which are clearly different from the ideal A7 atomic distribution (Fig. 1c). 
The boundaries between these lattice distortion regions (Fig. 1a A~F) are fuzzy and poorly defined. For clarity, 
these regions are displayed side-by-side in Fig. 2, and the d-spacings and interplanar angles measured from these 
regions are summarized in Table 1. All these regions show very similar d-spacings and interplanar angles, with 
deviations smaller than 0.1 Å and 0.3°, respectively. We note that the d-spacings (3.74± 0.03Å and 3.97± 0.03 Å) 
and the interplanar angles (71.52± 0.05°) determined from region E perfectly match those of the (003) and (101) 
planes of the A7 structure. Therefore, the SAED pattern (Fig. 1b) taken from the entire area of Fig. 1a does not 
show clear evidence of structural variation, even though changes in lattice parameters and clearly differences in 
lattice fringes are observed. It should be noticed that these lattice distortion regions may be formed in only nano-
scale (about 2–10 nm) basing on observations of the HRTEM images.

The shifts of Bi atoms from the A7 structure are so small (less than 0.1 Å) that HRTEM images and the corre-
sponding SAED patterns alone cannot offer solid proof of structural polytypes. To account for the subtle lattice 
distortions observed in HRTEM measurement, we theoretically investigated a number of possible structural var-
iations, in which atoms were shifted slightly from the equilibrium sites of the A7 structure without significant 
energy increase. Three new structures based on CALYPSO searches along with the known A7 structure and phase 
II (structure of Bi at pressure higher than 2.7 GPa) are shown in Fig. 3, where each structure is depicted with 
biatomic layers to highlight the structural similarities among them. These newly identified structures (Fig. 3b–d) 
are designated as M (monoclinic with space group C2/m), T1 (triclinic with space group P-1), and T2 (another 
triclinic structure with space group P1) phases, respectively. The symmetry groups, enthalpies, densities, and 
lattice parameters of these structures are listed in Table 2. Unit cells and atomic positions are shown in Fig. S1 (see 
the Supporting Information) and Table 3, respectively.

The bismuth biatomic layer can be constructed by chair-formed hex-atomic rings as building blocks. In Fig. 3f 
Bi atoms labelled as Bi1, Bi3, and Bi5 in the hex-atomic ring constitute the upper sub-layer, while those labelled as 
Bi2, Bi4, and Bi6 constitute the lower sub-layer. The Bi structures are constructed by stacking a series of biatomic 
layers. The biatomic layers in A7, M, T1, and Phase II structures are all parallel to the ab plane of the lattice. The 
A7 structure is comprised of …ABCABC… stacked biatomic layers A, B, and C along the c axis, with each layer 

Figure 1.  TEM micrograph of Bi treated under the pressure of 2GPa and the temperature 2273K.  
(a) HRTEM image viewed along the [101] zone axis of the A7 structure. Different lattice distortion regions 
are labeled by A–F. Measurements of lattice d-spacings and interplanar angles for the A7 structure are shown 
in region E; (b) Overall SEAD pattern corresponding to (a); (c) simulated atomic distribution observed along 
[010] direction in A7-Bi structure.
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spanning one third of the lattice period. For M, T1, and phase II structures, each biatomic layer spans one lattice 
period along the c axis. T2 structure (Fig. 3d), however, possesses the most complex crystal structure: The repeat-
ing unit consists of four chair-formed hex-atomic rings with distinct bond angles and bond lengths, as detailed 
in Fig. 3g. Each biatomic layer can only be constituted by moving the units along the [100] and [2-2 1] directions. 
These layers are parallel to the (0 2 4) plane of T2 structure, with an…ABAB… stacking along the b axis.

The chair-formed hex-atomic rings in these structures differ slightly in the bond angle and bond length. The 
corresponding angles (α 1–α 6) and lengths (L1–L6) are thus introduced (see Fig. 3f), and listed in Table 2 to char-
acterize each structure. The A7 structure has a unique chair conformation with identical bond angle of 94.54° and 
bond length of 3.1 Å. For the newly identified Bi polytypes, the bond angle and length show gradually increased 
diversities, leading to a gradually reduced symmetry from M to T1, and to T2. However, we note that deviations 
in the bond angle, bond length, and enthalpy are only within 0.5%, 0.8%, and 0.04%, respectively, for the Bi poly-
types compared with the A7 structure.

Figure 2.  Enlarged atomic-resolution electron micrographs for (A–F) areas in HRTEM image shown in 
Fig. 1. Corresponding atomic arrangements for given Bi structures are projected on the micrographs.

Measuring data in HR-TEM image
Corresponding d-spacings and angles in 

predicted Bi structures

Area in 
HR-TEM 
image

d-spacing (Å) 
Deviation: 
±0.03

Angle (°) 
Deviation: 
±0.05

Structure and 
zone axis d-spacing (Å)

Angle 
(°)

A
d1 =  3.99

71.38 T2-Bi [100]
d(012) =  4.0

71.34
d2 =  3.76 d(01−2) =  3.7453

B
d1 =  3.97

71.54 T1-Bi [0−10]
d(001) =  4.0323

71.50
d2 =  3.76 d(10−1) =  3.7593

C
d1 =  3.97

71.36 T2-Bi [100]
d(012) =  4.0

71.34
d2 =  3.76 d(01−2) =  3.7453

D
d1 =  3.95

71.67 C-Bi [010]
d(001) =  3.9683

71.64
d2 =  3.76 d(20−1) =  3.7453

E
d1 =  3.97

71.52 A7-Bi [010]
d(003) =  3.9370

71.56
d2 =  3.74 d(101) =  3.7453

F
d1 =  3.97

71.43 T1-Bi [0−10]
d(001) =  4.0323

71.50
d2 =  3.76 d(10−1) =  3.7593

Table 1.   Correspondence between the measured data for different areas in HR-TEM and corresponding 
d-spacings and angles in predicted Bi polytype structures.
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Dynamic stability of the new structures was verified by phonon spectrum calculations in Fig. S2 (see the 
Supporting Information), which show no imaginary frequencies in the Brillouin zone. Thermodynamic stability 
of these derivative structures was also examined, and the results are shown in Fig. 4. Enthalpy differences of the 
new structures relative to the A7 structure are less than 3 meV at pressures between 0 and 2.7 GPa. Such small 
differences suggest all these new structures are stable within this pressure range. At pressures higher than 2.7 GPa,  
our calculations show that the most stable structure is Bi-phase II. This is consistent with the known phase dia-
gram of Bi18.

The very small enthalpy differences among the A7, M, T1, and T2 structures suggest that very small energy 
perturbations, due to either phase transition from phase II on pressure release or magnetic treatment, may alter 
the structure of Bi and that these derivative polytypes can co-exist with the A7 structure. This may be the struc-
tural origin of the crystalline imperfections12 and the anisotropic defects15 or the speculated “mosaic block” 

Figure 3.  Top views of possible Bi polytype crystal structures. (a–e) are views along the a or b axis for A7, 
M, T1, T2, and Bi-phase II, respectively. The double atomic layers are described by the atoms connected by 
illustrative bonding sticks; (f) the typical chair-form hexatomic unit, and (g) the distorted chair-form hexatomic 
unit for the T2 structure.
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Structure
Symmetry 

group Lattice parameter
Enthalpy 

(eV/ atom)
Density 
(g/cm3) layer structural characteristic

A7 R-3m (D d3
5 )

a =  b =  4.5540Å 
c =  11.8281 Å 

α  =  β  =  90° γ  =  120°
− 3.8783 9.80 α 1 =  α 2 =  α 3 =  α 4 =  α 5 =  α 6 =  94.54° 

L1 =  L2 =  L3 =  L4 =  L5 =  L6 =  3.100 Å

M C2/m (C h2
3 )

a =  7.8873 Å 
b =  4.5572 Å 

c =  6.5836 Å α  =  γ  =  90° 
β  =  143°

− 3.8777 9.75 α 1 =  α 2 =  α 4 =  α 5 =  94.55° α 3 =  α 6 =  94.70° 
L1 =  L4 =  3.102 Å L2 =  L3 =  L5 =  L6 =  3.098 Å

T1 P-1 (Ci
1)

a =  4.5738 Å 
b =  4.5786 Å 

c =  4.8088 Å α  =  90.31° 
β  =  118.25° γ  =  60.04°

− 3.8769 9.47 α 1 =  α 4 =  94.98° α 2 =  α 5 =  94.78° α 3 =  α 6 =  94.61° 
L1 =  L4 =  3.098 Å L2 =  L5 =  3.123 Å L3 =  L6 =  3.106 Å

T2 P1 (C1
1)

a =  4.5767 Å 
b =  4.7786 Å 

c =  13.3039 Å α  =  86.07° 
β  =  90.02° γ  =  90.02°

− 3.8781 9.56
α 1 =  94.92 ±  0.07° α 2 =  94.92 ±  0.08° α 4 =  94.91 ±  0.06° 

α 5 =  94.88 ±  0.07° α 3 =  α 6 =  94.725 ±  0.005° 
L1 =  L4 =  3.098 Å L2 =  L5 =  3.1115 ±  0.005 Å 

L3 =  L6 =  3.110 Å

Phase II C2/m (C h2
3 )

a =  7.0015 Å 
b =  6.2556 Å 

c =  3.3749 Å α  =  γ  =  90° 
β  =  112.71°

− 3.8406 10.07 α 1 =  α 3 =  α 4 =  α 6 =  92.91° α 2 =  α 5 =  145.28° 
L1 =  L2 =  L4 =  L5 =  3.277 Å L3 =  L6 =  3.199 Å

Table 2.   Calculated symmetry groups, lattice parameters, enthalpies, densities, and double-atomic layer 
characteristics of the structural polytypes.

Bi structures Atoms Wyckoff

Atomic Positions

x/a y/b z/c

M Bi1 4i 1.02900 0 0.79310

T1 Bi1 2i 0.96552 0.26962 0.20288

T2

Bi1 1a 0.12504 0.97126 0.99179

Bi2 1a 0.62463 0.52827 0.50851

Bi3 1a 0.12485 0.02910 0.75843

Bi4 1a 0.62519 0.47073 0.74186

Bi5 1a 0.12432 0.02877 0.25836

Bi6 1a 0.62468 0.47042 0.24194

Bi7 1a 0.12495 0.96996 0.49170

Bi8 1a 0.62466 0.52955 0.00859

Table 3.   Atomic positions in new polytype structures of Bi.

Figure 4.  Enthalpy differences (ΔH) of the predicted Bi polytype structures relative to A7. Inset shows the 
details of Δ H at the pressure range from 2.2 to 3.2 GPa.
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structure25–28 in pure Bi. The density of calculated A7 structure is 9.80 g/cm3, in agreement with the experimental 
value reported by Kapitza24. The densities of M, T1, and T2 structures are all slightly lower than that of A7, with 
the lowest being 9.47 g/cm3 in T1 structure. Thus, the coexistence of various structural polytypes explains well 
the density variations measured by Goetz in Bi single crystals solidified under different magnetic field strength26.

Table 1 summarizes d-spacings and interplanar angles measured from HRTEM for regions A–F of Fig. 2 in 
comparison with the calculated ones. Simulated atomic positions viewed along the corresponding directions 
of the structural polytypes are superimposed on the HRTEM images in the upper right corners (Fig. 2). The 
excellent agreement between simulated and observed images suggest that region E corresponds to a projection 
along the [010] direction of the A7 structure, regions A and C to a projection along T2 [100], regions B and F to a 
projection along T1 [0 –1 0], and region D to a projection along M [010].

The structural polytypes can also be detected in XRD patterns (Fig. 5), which further confirm the coexistence 
of the derivative polytypes in the bulk samples including the raw Bi and the Bi specimens treated under the dif-
ferent conditions of high pressure and temperature. XRD peaks generally match the rhombohedral A7 structure 
(PDF#44-1246), but with additional weak peaks near the main peaks that cannot be explained by the A7 structure 
alone. The calculated XRD patterns of the M, T1, T2, and A7 structures are also shown in Fig. 5 for comparison. 
For illustration purposes, we concentrate on the main peak in the XRD patterns, which are magnified in Fig. 5b 
for the two-theta range from 26.5° to 27.5°. Clearly, there are one or more additional peaks other than the A7 (0 
1 2) peak at 27.16° in all the samples. A small peak at 26.99°, corresponding well to T2 (1 − 1 1), is present in the 
raw material (untreated) and the sample cold-pressed to 2 GPa, suggesting that small amounts of the derivative 
polytype T2 phase coexisted in the samples. Two additional peaks at 26.82° and 27.09° present in the sample 
cold-pressed to 2.7 GPa (i.e., above the A7–phase II boundary of 2.52 GPa) can be attributed to the T1 (1 1 − 1) 
and M (1 1 − 2), respectively. In the samples treated at 2 GPa/1073 K and 2 GPa/2273 K, the peaks at 26.75° and 
27.09° may correspond to the diffraction lines of T1 (1 0 0) and M (1 1 − 2), respectively (Fig. 5b). Note that the 
last two samples underwent melting and recrystallization, a more intense new peak is present at a smaller angle.

Conclusion
Based on the experimental and theoretical investigations, we establish the structural diversity as an essential prop-
erty for element Bi, in particular for samples treated at high pressures and high temperatures. Such diversity leads 
to the formation of secondary structures, which may be considered as derivative structures of the A7 phase. In our 
samples, these phase have only be observed on the nanoscale basing on the HRTEM images. Coexisting deriva-
tive structural polytypes may be a general phenomenon. One example is the monoclinic diamond (M-diamond) 
recently reported in bulk nanotwinned diamond material30. In that case, phase transition from carbon onion 
nanoparticles to diamond and localized stress heterogeneity across diamond twin domains may be the cause. The 

Figure 5.  XRD patterns of various Bi samples as compared with those calculated from the new structural 
polytypes. (a) Experimental XRD spectra corresponding to the Bi samples recovered from raw material, 
cold-pressing at 2GPa and 2.7GPa, HT-HP treating at 2GPa-1073K and 2GPa-2273K, and the calculated XRD 
spectra of M, T1, T2 and A7 structures. (b) The enlarged spectra at the range of 26.5~27.5°.
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exceptional thermal and mechanical properties observed in such multi-phase material suggest that coexisting 
structural polytypes may have interesting potentials in tailoring physical properties of materials.

Motheds
Experimental details.  Bi granules (Alfa Aesar, purity 99.999%) were compressed into cylinders (6 mm in 
diameter and 6 mm in height) and each was placed into a BN capsule with 8 mm outer diameter. High-pressure 
and high-temperature (HP-HT) experiments were performed using a China-type large volume cubic press with 
a maximum of 1400 tons on every WC anvil31. Pyrophyllite cubes with edge length of 49 mm served as both pres-
sure medium and gasket. The samples were first compressed to required pressure, and then heated to the desired 
temperature for 1 hour by resistive heating with graphite tube heaters (outer diameter 10 mm and inner diameter 
8 mm). The HP-HT conditions are presented in Table S1 (see the Supporting Information). For all the experi-
ments, temperature was measured in situ with a type C thermocouple (W5/Re26). Pressure was estimated with 
previously obtained calibration curves based on the electrical resistance change32 during the phase transitions of 
Bi at room temperature. After HP-HT treatment, the samples were quenched to room temperature at a cooling 
rate of ~100 K/s before the pressure was unloaded. Bulk samples recovered at ambient condition had diameters of 
approximately 5.5 mm and heights of 5.3-5.7 mm. Both the raw granules and the bulk samples after HP-HT treat-
ment were ground in an agate mortar with a pestle, for XRD (Rigaku D/MAX-PC/2500, operated at 40 kV and 
200 mA with a Cu-Kα  target) and high resolution transmission electron microscopy (HRTEM) (JEM-2010 with 
an accelerating voltage of 200 kV). The HRTEM was carefully calibrated with silicon at the selected magnifica-
tion. The change in microstructure due to grinding is expected to be the same for all samples; thus the difference 
observed in HRTEM and XRD analyses are considered due to HP-HT treatment.

First-Principles Calculations.  The software package of the crystal structure analysis by particle swarm opti-
mization (CALYPSO)33 was employed to search possible low-energy structures for Bi. We examined thousands 
of candidate structures with simulation cell sizes ranging from 2 to12 atoms, at pressures of 0-6 GPa. Structural 
relaxations were performed using the density functional theory (DFT) within the generalized gradient approxi-
mation (GGA)34 implemented in the Vienna Ab Initio Simulation Package (VASP)35. Projector augmented-wave 
pseudopotential with 6s26p3 electrons (as is the case of the valence for Bi) was adopted. The energy cutoff was 
300 eV, and appropriate Monkhorst-Pack k meshes were chosen to ensure that enthalpy calculations converged to 
better than 0.01 meV per atom for each structure. Phonon frequencies were generated using the Cambridge Serial 
Total Energy Package (CASTEP) with finite displacement theory36. Conventional DFT schemes that apply to the 
GGA usually overestimate lattice constant parameters37. In order to make direct comparison between calculated 
lattice parameters and the experimentally observed values, we adjusted hyrostatic pressure in computing the 
lattice parameters of the A7 structure, until they match the parameters for the rhombohedral structure (PDF#44-
1246). This hyrostatic pressure was identified for 1.2 GPa and then applied to all other possible structures in 
first-principles calculations. Finally, XRD patterns of these structures were simulated by Reflex tools package of 
the Materials Studio (MS) software, to help interpreting the experimentally observed XRD patterns.
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